Undergraduate Course Descriptions

SE 1. Introduction to Structures and Design:  Introduction to fundamentals of aerospace, civil, mechanical, marine and offshore structures. Lessons learned from structural failures. How structures work. Role and responsibility of structural engineers in society. Implications on safety. Professional ethics. Prerequisites:SE major.

SE 2. Structural Materials:  Properties and structures of engineering materials, including metals and alloys, ceramics, cements and concretes, polymers, and composites. Elastic deformation, plastic deformation, fracture, fatigue, wearing, and corrosion. Selection of engineering materials based on performance and cost requirements.  Prerequisites: grades of C- or better Chem. 6A, and Phys. 2A.

SE 2L.  Structural Materials Lab:  Materials testing and/or processing for metals and alloys, polymers and composites, cements, and wood. Materials selection and structural design to meet functional and cost requirements. Structural construction and testing. Use of computer resources. Prerequisites: Chem 6A, Phys 2A and SE 2.

SE 3.  Graphical Communication for Engineering Design:  Use of computer graphics (CAD software) to communicate engineering designs.  Includes visualization, sketching, 2D and 3D graphics standards, dimensioning, tolerance, assemblies, and prototyping/testing with light manufacturing methods. Project/system management software, i.e., building information modeling (BIM), will be introduced.  Prerequisites:  SE 1.

SE 7.   Spacial Visualization:   Spatial visualization is the ability to manipulate 2D and 3D shapes in one's mind. In this course, students will perform exercises that increase their spatial visualization skills.  Prerequisites:  None.

SE 9. Algorithms and Programming for Structural Engineering: Introduction to the Matlab environment. Variables and types, statements, functions, blocks, loops, and branches. Algorithm development. Functions, function handles, input and output arguments. Data encapsulation and object-oriented programming. Toolboxes and libraries. Models from physics (mechanical and thermodynamics) are used in exercises and projects.  Prerequisites: grades of C- or better in Math 20D, and Math 20F (20F may be concurrent).

SE 101A. Mechanics I: Statics:  Statics of particles and rigid bodies in two and three dimensions using vector representation; free body diagrams; analysis of trusses, frames, and machines; internal forces; shear force and bending moment diagrams; equilibrium problems with friction; introduction to moment of inertia.  Prerequisites: grade of C- or better in Math 20C and Phys. 2A.

SE 101B. Mechanics II - Dynamics:  Kinematics and kinetics of particles and rigid bodies in 2-D and 3-D motion using vector representation; Newton’s second law; work, energy, and power; conservative forces, conservation principles; linear and angular impulse and momentum, and impact; Coriolis acceleration; rotating reference frames.  Prerequisites: grades of C- or better in SE 101A (or MAE 130A).

SE 101C. Structural Mechanics III - Structural Dynamics:   Free and forced vibrations of undamped and damped one-degree of freedom systems; Fourier analysis; vibration isolation; analysis of discrete multiple degree-of-freedom systems using normal mode matrix formulation; Lagrange's equations; introduction to continuous vibrating systems and numerical analysis.  Prerequisites: grades of C- or better in Math 20F and SE 101B (or MAE 130B).

SE 102. Numerical, Computational and Graphical Tools: Introduction to engineering graphics and computer-aided design (CAD). Introduction to numerical computer algorithms and symbolic computation. Introduction to the development of methods for assessing the accuracy of numerical methods.
Prerequisites: grades of C- or better in SE 1, SE 9, and SE 101A or MAE 130A.

SE 103. Conceptual Structural Design:   Introduction to structural design approaches for civil structures. Structural
materials. Loads and load paths. Gravity & lateral load elements and systems.  Code design fundamentals. Construction methods. Structural idealization. Hand and computer methods of analysis. Experimental methods applied through team-based projects.  Program or materials fee may apply.  Prerequisites:  SE 9, SE 101A  (or MAE 130A), SE 104 and SE 104L.

SE 104.  Structural Materials:   Properties and structures of engineering materials, including metals and alloys, ceramics, cements and concretes, wood, polymers, and composites. Elastic deformation, plastic deformation, fracture, fatigue, creep.  Selection of engineering materials based on performance and cost requirements. Measurement techniques.  Prerequisites: SE 1 and SE 101A (or MAE 130A).

SE 104L.  Structural Materials Lab:  Materials testing for cement and concrete, metals and alloys, polymers and composites, and wood. Materials selection and structural design to meet functional and cost requirements. Structural construction and testing. Materials measurement techniques.  Prerequisite: SE 104. (may be taken concurrently with SE 104 with department permission).

SE 110A. Solid Mechanics I:  Concepts of stress and strain. Hooke’s law. Stress transformation. Axial loading of bars. Torsion of circular shafts. Torsion of thin-walled members. Pure bending of beams. Unsymmetric bending of beams. Shear stresses in beams. Shear stresses in thin-walled beams. Shear center. Differential equation of the deflection curve. Deflections and slopes of beams from integration methods. Statically determinate and indeterminate problems.  Prerequisites: SE 101A (or MAE 130A), and Math 20D.

SE 110B. Solid Mechanics II:   Additional concepts in the mechanics of deformable bodies. Unsymmetric bending of symmetrical and unsymmetrical sections.  Shear center and torsional analysis of open and closed sections. Stability analysis of columns, lateral buckling. Energy methods. Principal stresses and failure theories.  Prerequisite: grade of C- or better in SE 110A.

SE 115. Fluid Mechanics for Structural Engineering: Fluid statics, hydrostatic forces; integral and differential forms of conservation equations for mass, momentum and energy; Bernoulli equation; dimensional analysis; viscous pipe flow; external flow, boundary layers; open channel flow.  Prerequisites: Phys 2A and Math 20D.

SE 120. Engineering Graphics & Computer Aided Structural Design: Engineering graphics, solid modeling CAD applications including 2-D and 3-D transformations, 3-D viewing, wire frame and solid models. Hidden surface elimination.  Program and or materials fee may apply.  Prerequisites: grades of C- or better in SE 102, and SE 103.

SE 121.  Computational and Graphical Tools for Structural Engineering II : Direct and iterative linear algebra for systems of linear equations. Errors. Representation of numbers. Eigenvalue problem. Finite differences for initial and boundary value problems. Stability. Unconstrained and constrained optimization. Least squares solutions, orthogonality. Matlab used for programming exercises and projects.   Prerequisites: grade of C- or better in SE 101C (or MAE 130C) and SE 102.

SE 121A.  Introduction to Computing for Engineers:  Introduction to engineering computing. Interpolation, integration, differentiation. Ordinary differential equations. Nonlinear algebraic equations. Systems of linear algebraic equations. Representation of data in the computer.  Prerequisites:  SE 9 and SE 101A (or MAE 130A).

SE 121B.  Computing Projects in Structural Engineering:  Exploration of numerical algorithms in engineering computations. Centered around computing projects. Matrix eigenvalue problems, boundary value
problems, solution of systems of nonlinear algebraic equations, optimization.  Prerequisite:  SE 101C (or MAE 130C) and SE 121A.

SE 125. Statistics, Probability and Reliability: Probability theory. Statistics, data analysis and inferential statistics, distribution, confidence intervals. Introduction to structural reliability and random phenomena.
Prerequisite: SE major.

SE 130A. Structural Analysis:   Classical analysis methods of determinate and indeterminate structures.  Deflection calculation of beams and frames, work-energy methods, flexibility method, slope-deflection method, moment distribution method, approximate structural analysis, influence line concept for moving loads.  Prerequisite: grade of C- or better in SE 110A.

SE 130B. Structural Analysis:   Matrix methods of analysis for structures comprised of a large number of truss and beam-column structural elements. Development of the underlying mathematical formulations based on matrix structural analysis, and implementation of computer codes for the analysis of civil, mechanical, and aerospace structures.  Prerequisite: grades of C- or better SE 130A.

SE 131. Finite Element Analysis:   Development of finite element models based upon the Galerkin method. Application to static and dynamic heat conduction  and stress analysis. Formulation of initial boundary value problem models, development of finite element formulas, solution methods, and error analysis and interpretation of results.  Prerequisites:  SE 101C (or MAE 130C), SE 121B, and SE 130B (co-requisite).

SE 140. Structures and Materials Laboratory:   Introduction to concepts, procedures, and key issues of engineering design. Problem formulation, concept design, configuration design, parametric design, and documentation. Project management, team working, ethics, and human factors. Term project in model structure design.   Program and or materials fee may apply.  Prerequisites: grade of C– or better in SE 103, SE 130B, and senior standing in the major.

SE 140A.  Professional Issues and Design for Civil Structures I:  Part I of multidisciplinary team experience to design, analyze, build, and test civil/geotechnical engineering components and systems considering codes, regulations, alternative design solutions, economics, sustainability, constructability, reliability and aesthetics. Professionalism, technical communication, project management, teamwork, and ethics in engineering practice.  Prerequisites: SE 130B and SE 150.

SE 140B.  Professional Issues and Design for Civil Structures II: Part II of multidisciplinary team experience to design, analyze, build, and test civil/geotechnical engineering components and systems considering codes,regulations, alternative design solutions, economics, sustainability, constructability, reliability and aesthetics. Professionalism, technical communication, project management, teamwork, and ethics in engineering practice.  Prerequisites:  SE 140A, SE 151A and SE 181.

SE 142. Design of Composite Structures:   Introduction to advanced composite materials and their applications. Fiber and matrix properties, micromechanics, stiffness, ply-by-ply stress, hygrothermal behavior, and failure prediction. Lab activity will involve design, analysis, fabrication, and testing of composite structure. Program and or materials fee may apply.  Program or materials fee may apply.  Prerequisites: SE 110A, SE 110B, and SE 160A.

SE 143A.  Aerospace Structural Design I:  Conceptual and preliminary structural design of aircraft and space vehicles.  Minimum-weight design of primary structures based upon mission requirements and configuration constraints. Multi-criteria decision making. Team projects
include layout, material selection, component sizing, fabrication, and cost. Oral presentations. Written reports.  Prerequisites: SE 3, SE 142, and SE 160B.

SE 143B.  Aerospace Structural Design II:  Detailed structural design of aircraft and space vehicles. Composite material design considerations. Multidisciplinary design optimization. Introduction to aerospace computer-aided design and analysis tools. Team projects include the analysis, fabrication, and testing of a flight vehicle component. Oral presentations. Written reports.  Prerequisites: SE 143A.

SE 150. Design of Steel Structures:   Concrete and reinforcement properties. Rheological behavior. Ultimate strength Theory. Design of structural components. LFRD Design codes. Detailing of structural concrete.Prerequisites:  SE 130A.

SE 151A. Design of Reinforced Concrete: Concrete and reinforcement properties. Service and ultimate limit state analysis and design. Design of detailing of structural components.
Prerequisites:   SE 103 and SE 130A.

SE 151B. Design of Prestressed Concrete:  Mechanical properties of concrete and reinforcing material including creep, shrinkage, and stress relaxation.  Concept and application of prestressed concrete.  Analysis and design of prestressed concrete structures and components including continuous beams and composite construction.  Calculation of deflection and prestress losses
Prerequisite: grade of C- or better in SE 151A.

SE 152. Seismic Design of Structures: Seismic design philosophy. Ductility concepts. Lateral force resisting systems. Mechanisms of nonlinear deformation. Methods of analysis. Detailing of structural steel and reinforced concrete elements. Lessons learned from past earthquakes. Multistory building design project.
Prerequisites: SE 130B, SE 150 and SE 151A.

SE 154. Design of Timber Structures:   Properties of wood as a building material.  Analysis and design of wood beams and columns.  Lateral analysis for wind/seismic loading using the IBC.  Distribution of lateral forces through a wood structure.  Shear wall and diaphragm design.  Wood connections introduction.  Prerequisites: grades of C- or better in SE 103 and SE 130A.

SE 160A. Aerospace Structural Mechanics I:   Aircraft and spacecraft flight loads and operational envelopes, three-dimensional stress/strain relations, metallic and composite materials, failure theories, three-dimensional space trusses and stiffened shear panels, combined extension-bend-twist behavior of thin-walled multi-cell aircraft and space vehicle structures, modulus-weighted section properties, shear center.  Prerequisites: SE 2, SE 2L, SE 101B (or MAE 130B) and SE 110A.

SE 160B. Aerospace Structural Mechanics II:   Analysis of Aerospace structures via work-energy principles and finite element analysis.  Bending of metallic and laminated composite plates and shells.  Static vibration, and buckling analysis of simple and built-up aircraft structures.  Introduction to wing divergence and flutter.  Fastener analysis.  Prerequisites: SE 101C (or MAE 130C) and SE 160A.

SE 163. Nondestructive Evaluation and Design:   Fourier signal processing, liquid penetrant, elastic wave propagation, ultrasonic testing, impact-echo, acoustic emission testing, infrared thermography.  Prerequisites: grades of C- or better in SE 110A and SE 110B; or consent of instructor.

SE 165.  Structural Health Monitoring:  A modern paradigm of structural health monitoring as it applies to structural and mechanical systems is presented. Concepts in data acquisition, feature extraction, data normalization, and statistical modeling will be introduced in an integrated context. MATLAB-based exercise. Term project.  Prerequisites: SE 101C (or MAE 130C).

SE 168. Structural System Testing and Model Correlation:   Dynamic/model testing of structures: test planning/execution, actuation, sensing, and data acquisition, signal processing, data conditioning, test troubleshooting. Methods of updating finite element structural models to correlate with dynamic test results. Model/test correlation assessment in industrial practice. Knowledge of MATLAB required.  Prerequisites: SE 101C (or MAE 130C), and SE 131.

SE 171. Aerospace Structures Repair:   Review methods used to repair aerospace structures. Emphasis on primary load-bearing airframe structures and analysis/design of substantiate repairs. Identification of structural/corrosion distress, fatigue cracking, damage tolerance, integrity and durability of built-up members, patching, health monitoring.  Program and or materials fee may apply.  Prerequisites:  SE 160A.

SE 180. Earthquake Engineering:   Seismic hazards. Ground motions. Dynamic analysis of structures under earthquake excitation. Elastic and inelastic response spectra. Modal analysis. Linear/nonlinear time history analysis. Seismic Code. Engineering seismology. Basics of Earthquake resistant design.  Prerequisites:grades of C- or better in SE 110A and SE 130A.

SE 181. Geotechnical Engineering:   General introduction to the mechanics of soils, including; composition and classification, compaction, compressibility and consolidation, permeability and seepage, stress distribution, settlement and shear strength, as well as soil exploration, sampling, and in-situ testing techniques. Physical laboratory taken concurrently.  Prerequisites: grades of C- or better in SE 110A.

SE 182. Foundation Engineering:   Application of soil mechanics to the analysis, design, and construction of
foundations for structures. Soil exploration, sampling, and in-situ testing techniques. Stress distribution and settlement of structures. Bearing capacities of shallow foundations and effects on structural design. Analysis of axial and lateral capacity of deep foundations, including drilled piers and driven piles.  Prerequisite:  SE 181.

SE 184. Ground Improvement:  Concepts underpinning mechanical, hydraulic, chemical and inclusion-based methods of ground improvement will be discussed.  Students will be able to understand the advantages, disadvantages and limitations of the various methods;  and develop a conceptual design for the most appropriate improvement strategy.  Prerequisite:  SE 181.

SE 192. Senior Seminar:  The Senior Seminar is designed to allow senior undergraduates to meet with faculty members to explore an intellectual topic in structural engineering. Topics will vary from quarter to quarter. Enrollment is limited to twenty students with preference given to seniors. Prerequisites: SE major. Department stamp and/or consent of instructor.

SE 195. Teaching:  Teaching and tutorial assistance in a SE course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. (P/NP grades only.) Prerequisites: B average in major, upper-division standing and consent of department chair. Department stamp required.

SE 197. Engineering Internship:  An enrichment program, available to a limited number of undergraduate students, which provides work experience with industry, government offices, etc., under the supervision of a faculty member and industrial supervisor. Coordination of the Engineering Internship is conducted through UC San Diego’s Academic Internship Program. Prerequisites: completion of ninety units with a 2.5 GPA and consent of department chair. Department stamp required.

SE 198. Directed Study Group:  Directed group study, on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: consent of instructor or department stamp.

SE 199. Independent Study:  Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisites:  consent of instructor or department stamp.