DEPARTMENT OF STRUCTURAL ENGINEERING
GRADUATE STUDENT AFFAIRS CONTACT LIST

GRADUATE AFFAIRS COMMITTEE 2014-15

Professor Joel P. Conte, GAC Chair (SME Bldg., Room 443K)
jpconte@ucsd.edu, (858) 822-4545

Professor Yuri Bazilevs (SME Bldg, Room 445H)
yuri@ucsd.edu (858) 534-3663

Professor David Benson (SME Bldg., Room 445G)
dbenson@ucsd.edu (858) 534-5928

Professor Chiara Bisagni (SME Bldg., Room 441H)
cbisagni@ucsd.edu, (858) 534-4599

Professor Patrick J. Fox (SME Bldg., Room 444G)
pjfox@ucsd.edu (858) 822-0431

Professor Francesco Lanza di Scalea (SME Bldg., Room 442H)
flanza@ucsd.edu (858) 822-1458

Professor Gilberto Mosqueda (SME Bldg., Room 443G)
gmosqueda@ucsd.edu (858) 534-4722

Professor P. Benson Shing (Ex-Officio) (SME Bldg., Room, 443J)
pshing@ucsd.edu (858) 822-4567

Dr. Lelli Van Den Einde (LSOE) (SME Bldg., Room 440E)
yvandeneinde@ucsd.edu (858) 822-2188

DEPARTMENT CHAIR
Professor Enrique Luco
jeluco@ucsd.edu
(Chair’s Office: SME Building, Room 341J)

BUSINESS OFFICER
Jacqueline Vo
jtvo@ucsd.edu (858) 534-8082

DEPARTMENT VICE-CHAIRS
Professor P. Benson Shing
(SME Bldg., Room 443J)
pshing@ucsd.edu (858) 822-4567

Professor Michael Todd
(SME Bldg., Room 445E)
mdt@ucsd.edu (858) 534-5951

GRADUATE STUDENT AFFAIRS ADVISORS
Yvonne Wilson (SME Bldg., Room 340B) ywilson@ucsd.edu (858) 822-1421

Julie Storing (SME Bldg., Room 340E) jstoring@ucsd.edu (858) 534-4185
THE STRUCTURAL ENGINEERING PROGRAM

The Department of Structural Engineering at the University of California at San Diego offers a unique program that crosses different engineering disciplines, including civil, geotechnical, mechanical, aerospace, biological, and marine/offshore engineering, with a focus on structural design and analysis, structural materials, computational mechanics, and solid mechanics. This broad-based cross-disciplinary structural engineering approach allows not only diversity in the selection of graduate courses but also a diversity of employment opportunities across the engineering spectrum.

The program is tailored towards the common needs and reliance of different engineering fields on the knowledge and advances in materials engineering, classical structural mechanics theories, computational and numerical analysis tools, experimental structural analysis, and structural health monitoring for applications ranging from nano-structures to large-scale civil infrastructure systems. While providing training on the fundamentals, the program offers specialization within a chosen area through a sequence of discipline specific courses. In particular, the Structural Engineering program offers the opportunity for further education in one or more of the following five primary focus areas that are intimately tied to the current research activities in the Department: (1) Earthquake Engineering, (2) Advanced Composites and Aerospace Structural Systems, (3) Renewal Engineering, (4) Structural Health Monitoring, Prognosis and Validated Simulations, and (5) Computational Mechanics.

Unique education and research opportunities are provided by faculty expertise across a range of specialties in materials and structural systems of different types and scales, and through the specially designed laboratories including the world-renowned Charles Lee Powell Structural Research Laboratories. This unique facility consists of a set of large-scale testing laboratories where full-scale structural systems ranging from bridges and buildings, ship hulls and deck structures, to aircraft wings and structural systems can be tested using state-of-the-art computer-controlled equipment. The Structural Systems Laboratory houses a 15-m tall reaction wall and a 37-m long strong floor, while the Structural Components Laboratory has a 9-m tall by 19-m wide strong wall with a 14.3 by 21.3-m strong floor, and the Composites Structures Laboratory has a 9-m tall by 5.5-m wide strong wall with a 14.3 by 7.2-m strong floor. The facility also includes a
high-capacity shake table and a geotechnical laboratory including a centrifuge and soil boxes. The research facilities also include state-of-the-art nano-materials characterization facilities, polymer and composite characterization and processing laboratories, composites and aerospace structures laboratories, non-destructive evaluation laboratories, structural dynamics laboratory, a unique 6-DOF seismic response modification device test facility, and other unique facilities. The Englekirk Structural Engineering Center is equipped with the world's first outdoor shake table adjacent to the country's largest soil-structure interaction test facility, allowing researchers to perform dynamic earthquake safety tests on full-scale structural systems. It also houses a blast simulator, which is the world’s first facility designed to study structural response to, and damage caused by, bomb blasts without creating actual explosions. Besides enabling one-of-a-kind experiments, the laboratory facilities enable the validation of sophisticated design and analysis models, which are subsequently used for design, numerical prediction, and detailed parametric studies. Thus, a complete systems approach from materials development and large-scale experiments to implementation of sensor networks and development of design recommendations and nonlinear analytical models is typical for research projects in the Department.

Close industrial ties exist between UCSD Structural Engineering faculty and the civil, aerospace, and marine engineering communities. The program is also strengthened by close ties with UCSD’s Scripps Institution of Oceanography, the California Space Institute, the San Diego Supercomputer Center, the Environmental Sciences Initiative, and the Los Alamos National Laboratory (LANL). The Department is responsible for a significant portion of the UCSD/LANL Research and Educational Collaboration, a program unique in the Nation that combines UCSD and LANL expertise in specific research areas. These collaborations, in combination with the Powell Structural Research Laboratories, provide a unique research environment for graduate students and faculty alike.
THE GRADUATE PROGRAM

M.S. DEGREE IN STRUCTURAL ENGINEERING

The M.S. degree program is intended to provide students with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree coursework. In addition to the traditional M.S. degree in Structural Engineering, there is an M.S. degree with specialization in Structural Health Monitoring, Prognosis, and Validated Simulations (SHMP&VS). The requirements for the M.S. degree in SHMP&VS are listed in a separate section of this handbook. Two M.S. degree plans are offered, the M.S. Thesis Plan and the M.S. Comprehensive Examination Plan.

The M.S. Thesis Plan is designed for those students with an interest in research prior to entering a professional career or prior to entering a doctoral degree program. The M.S. Comprehensive Examination Plan requires full coursework, and requires the completion of a written comprehensive examination covering multiple courses that the student has taken. The MS Comprehensive examination will cover two focus sequences and at least one additional technical elective. The examination must be completed no later than the end of the 8th week of the quarter the student intends to graduate.

All M.S. students, no matter what focus sequences are chosen for the Master program, must complete the Core Course Sequence (CCS) before they can graduate. The CCS is formed by the following three courses. The Core Courses can be used towards a focus sequence or technical elective.

- SE200 Applied Math, MATH 210A, MAE 290A or MAE 294A
- SE201A Advanced Structural Analysis
- SE271 Solid Mechanics for Struct. & Aerospace Engineering

M.S. students must complete forty-eight units of credit for graduation. Graduate courses that are listed in multiple focus sequences may only be used once. For the M.S. Comprehensive Examination Plan, all 48 units of credit must consist of regular courses (12 courses). Students must obtain their advisor’s approval on their planned coursework before enrolling in the courses. The SE Graduate Affairs Committee must also approve the coursework.
For the M.S. Thesis Plan, 36 units (nine courses) from regular courses are required, in addition to 12 units of graduate research (SE 299) for the Master Thesis.

For both M.S. plans, students are required to complete a minimum of two focus sequences. Any three of the courses listed under a specific topic area constitute a focus sequence.

The focus sequences are listed below:

Structural Analysis (take any 3)

- SE 201A Advanced Structural Analysis
- SE 201B Nonlinear Structural Analysis
- SE 202 Structural Stability
- SE 203 Structural Dynamics
- SE 204 Advanced Structural Dynamics
- SE 206 Random Vibrations
- SE 205 Nonlinear Mechanical Vibrations
- SE 215 Cable Structures
- SE 224 Structural Reliability and Risk Analysis

Computational Mechanics and Finite Elements (take any 3)

- SE 233 Computational Techniques in Finite Elements
- SE 274 Nonlinear Finite Element Methods
- SE 276A Finite Element Methods in Solid Mechanics I
- SE 276B Finite Element Methods in Solid Mechanics II
- SE 276C Finite Element Methods in Solid Mechanics III
- SE 277 Error Control in Finite Element Analysis
- SE 278A Computational Fluid Dynamics
- SE 278B Computational Fluid-Structure Interaction
- SE 279 Meshfree Methods for Linear and Nonlinear Mechanics

Structural Design (take any 3)

- SE 151B Design of Prestressed Concrete
- SE 211 Advanced Reinforced & Prestressed Concrete Design
- SE 212 Advanced Structural Steel Design
- SE 213 Bridge Design
- SE 214 Masonry Structures
- SE 220 Seismic Isolation and Energy Dissipation
- SE 223 Advanced Seismic Design of Structures
Earthquake Engineering (take any 3)

SE 203 Structural Dynamics
SE 206 Random Vibrations
SE 220 Seismic Isolation and Energy Dissipation
SE 221 Earthquake Engineering
SE 222 Geotechnical Earthquake Engineering
SE 223 Advanced Seismic Design of Structures
SE 243 Soil-structure Interaction

Advanced Composites (take any 3)

SE 251A Processing Science of Composites
SE 251B Mechanical Behaviors of Polymers & Composites
SE 252 Experimental Mechanics and NDE
SE 253A Mechanics of Laminated Comp. Structures I
SE 253B Mechanics of Laminated Comp. Structures II
SE 253C Mechanics of Laminated Anisotropy Plates & Shells

Geotechnical Engineering (take any 3)

SE 222 Geotechnical Earthquake Engineering
SE 241 Advanced Soil Mechanics
SE 242 Advanced Foundation Engineering
SE 243 Soil-structure Interaction
SE 244 Numerical Methods in Geomechanics
SE 247 Ground Improvement
SE 250 Stability of Earth Slopes & Retaining Walls

Solid Mechanics (take any 3)

SE 234 Plates and Shells (or MAE equivalent)
SE 235 Wave Propagation in Elastic Media
SE 252 Experimental Mechanics and NDE
SE 271 Solid Mechanics for Structural & Aerospace Engineering
SE 272 Theory of Elasticity
SE 273 Anelasticity

Advanced Structural Behavior (take any 3)

SE 202 Structural Stability
SE 204 Advanced Structural Dynamics
SE 205 Nonlinear Mechanical Vibrations
SE 206 Random Vibrations
SE 224 Structural Reliability and Risk Analysis
SE 252 Experimental Mechanics and NDE
SE 265 Structural Health Monitoring Principles
Students taking the Solid Mechanics focus sequence are required to take SE 271, SE 272 and one of these courses: SE 273, SE 252, or SE 235.

*SE 207 Topics in Structural Engineering will be acceptable to use towards a focus sequence requirement pending petition and approval of the Graduate Affairs Committee (GAC).

To meet the specific needs of some students, other focus sequences may be developed in consultation with their advisor, but these must be approved by the SE Graduate Affairs Committee prior to taking the courses. To allow for greater flexibility in the program, the remaining credits required from courses may be earned by completing additional focus sequences, parts of focus sequences, or other appropriate courses. Students may elect to take other appropriate technical electives (with the approval of their advisor and the SE Graduate Affairs Committee). Core courses can be used towards a focus sequence or a technical elective. Units obtained in SE 290 and 298 may not be applied toward the coursework requirement. No more than four units of SE 296 may be applied toward coursework requirements and only with the prior approval of the SE Graduate Affairs Committee.

The thesis defense is the final examination for students enrolled in the M.S. Thesis Plan and must be conducted after completion of all coursework. Upon completion of the research project, the student writes a thesis that must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty members. A complete copy of the student’s thesis must be submitted to each committee member a minimum of two weeks prior to the defense.

Students must take SE 290 every quarter in the first year, and are strongly recommended to take it for at least one quarter in every subsequent year. In special cases where an undergraduate course may be used, the arrangement must be preapproved by both the academic advisor and the Graduate Affairs Committee.
M.S. DEGREE IN STRUCTURAL ENGINEERING WITH SPECIALIZATION IN HEALTH MONITORING, PROGNOSIS AND VALIDATED SIMULATIONS (SHMP&VS)

The M.S. degree in SHMP&VS provides specialized multidisciplinary knowledge in the three technology areas of (1) Sensing Technology, (2) Data Interrogation, and (3) Predictive Modeling. Many courses currently offered within the Jacobs School of Engineering may be grouped into numerous focus sequences within each technology area, as shown in the following list:

A. Sensing Technology Area

1. **Sensing Methodologies Focus Sequence**
 - SE 252 Experimental Mechanics and NDE
 - MAE 261 Cardiovascular Fluid Mechanics
 - MAE 268 Frontier Micro-Electro-Mechanical Systems (MEMS) Materials and Devices

2. **Data Acquisition Systems Focus Sequence**
 - ECE 257B Principles of Wireless Networks
 - ECE 258A,B Digital Communications
 - ECE 259C Advanced Coding and Modulation for Digital Communications
 - MAE 261 Cardiovascular Fluid Mechanics
 - CSE 237A Introduction to Embedded Computing
 - CSE 237B Software for Embedded Computing
 - CSE 237C Validation/Testing of Embedded Systems
 - CSE 237D Design Automation and Prototyping for Embedded Systems

3. **Controls Focus Sequence**
 - MAE 280A Linear Systems Theory
 - MAE 280B Linear Control Design
 - MAE 282 Adaptive Control
 - MAE 284 Robust and Multi-Variable Control
 - MAE 285 Optimal Control and Estimation
B. **Data Interrogation Technology Area**

1. **Signal Processing Focus Sequence**
 - ECE 161A Introduction to Digital Signal Processing
 - ECE 251A/SIO 207B Digital Signal Processing I
 - ECE 251B/SIO 207C Digital Signal Processing II
 - ECE 251C Filter Banks and Wavelets
 - ECE 251D or SIO 207D Array Processing
 - ECE 253A Fundamentals of Digital Image Processing
 - ECE 254 Detection Theory
 - ECE 255A Information Theory

2. **System Identification Focus Sequence**
 - MAE 283A Parameter Identification: Theory and Methods
 - MAE 283B Approximate Identification and Control
 - ECE 256A,B Time Series Analysis and Applications
 - ECE 275A Parameter Estimation I
 - ECE 275B Parameter Estimation II

3. **Pattern Recognition Focus Sequence**
 - CSE 250A Artificial Intelligence: Search and Reasoning
 - CSE 250B Artificial Intelligence: Learning
 - CSE 254 Statistical Learning
 - ECE 270A,B,C Neurocomputing

4. **Statistical/Probabilistic Methods Focus Sequence**
 - MATH 281A, B, C Mathematical Statistics
 - CSE 254 Statistical Learning
 - SE 206 Random Vibrations
 - SE 224 Structural Reliability and Risk Analysis
C. Predictive Modeling Technology Area

1. Structural Analysis Focus Sequence
 - SE 201A Advanced Structural Analysis
 - SE 202 Structural Stability
 - SE 203 Structural Dynamics
 - SE 204 Advanced Structural Dynamics
 - SE 224 Structural Reliability and Risk Analysis

2. Computational Mechanics Focus Sequence
 - SE 276A Finite Element Methods in Solid Mechanics I
 - SE 276B Finite Element Methods in Solid Mechanics II
 - SE 276C Finite Element Methods in Solid Mechanics III
 - SE 274 Nonlinear Finite Elemental Methods

3. Solid Mechanics Focus Sequence
 - SE 271 Solid Mechanics for Structural and Aerospace Engineering
 - SE 272 Theory of Elasticity
 - SE 273 / MAE231C Anelasticity
 - SE 252 Experimental Mechanics and NDE
 - SE 235 Wave Propagation in Elastic Media

4. Material Behavior/Modeling
 - MAE 233B Micromechanics
 - SE 276C/MAE 232C Finite Element Methods in Solids Mechanics III
 - MAE 273A Dynamic Behavior of Materials

5. Advanced Structural Behavior
 - SE 204 Advanced Structural Dynamics
 - SE 205 Nonlinear Mechanical Vibrations
 - SE 206 Random Vibrations
 - SE 224 Structural Reliability and Risk Analysis
 - SE 252 Experimental Mechanics and NDE
 - SE 265 Structural Health Monitoring Principles
6. **Earthquake Engineering Focus Sequence**
 - SE 203 Structural Dynamics
 - SE 206 Random Vibrations
 - SE 221 Earthquake Engineering
 - SE 222 Geotechnical Earthquake Engineering
 - SE 223 Advanced Seismic Design of Structures

7. **Advanced Composites Focus Sequence**
 - SE 253A Mechanics of Laminated Composite Structures I
 - SE 254 FRP Rehabilitation of Civil Structures

Two degree plans in SHMP&VS will be offered: MS Thesis Plan and MS Comprehensive Examination Plan. Students in both plans must complete 48 units of credit for graduation. For both plans, students must complete 36 units of coursework consisting of one focus sequence from each of the three Technology Areas A, B and C listed above. Any three of the courses listed under a specific topic area constitutes a focus sequence. Courses must be chosen in consultation with the student’s adviser. The remaining 12 units must be completed as graduate research, SE 299.

For the M.S. SHMP&VS Comprehensive Examination Plan, the 12-unit graduate research, SE 299, must be conducted as a mentored research project. This project is intended to provide a mentored practicum whereby students integrate knowledge learned from their technology areas into comprehensively solving a problem from structural health monitoring/prognosis or model validation and uncertainty quantification, at their discretion. This project will emphasize professional practice, with both oral and written communication of technical data, and will include a strong design component. The project will be presented to a committee of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus.

For the M.S. SHMP&VS Thesis Plan, the 12-unit graduate research, SE 299, culminates in the preparation of a research thesis. The thesis must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty
members. The committee will be comprised of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus. A complete copy of the student’s thesis must be submitted to each member of the MS thesis committee at least two weeks prior to the defense.

Because of the inherent multidisciplinary nature of the M.S. SHMP&VS degree, conduction of research within SE 299 can be performed at selected pre-approved outside locations (industry or government facilities). In this case a scientist on location, with an adjunct faculty appointment at UCSD, will be part of the student’s committee. The degree is also available to students working in industry or government laboratories that cannot be released from their duties for periods of more than 1-2 quarters. In these cases, UCSD courses taken via distance learning may be used to satisfy the course requirements. A scientist on location, with an adjunct faculty appointment at UCSD, must be part of the student’s committee.

All students in the SHMP & VS program are required to take SE 290 every quarter in the first year, and are strongly recommended to take it for at least one quarter in every subsequent year. For those students working in industry or government laboratories that cannot be released from their duties, successful completion of SE 290 will be obtained by attending an equivalent number of seminars at the off-site location that must be approved by a scientist on location with an adjunct faculty appointment at UCSD.
PH.D. DEGREE IN STRUCTURAL ENGINEERING

The Ph.D. program is intended to prepare students for careers in research, teaching and advanced professional practice in the broad sense of structural engineering, encompassing civil and aerospace structures, earthquake and geotechnical engineering, composites, and engineering mechanics. Dependent on the student’s background and ability, research is initiated as soon as possible. All students, in consultation with their advisors, develop course programs that will prepare them for the Departmental Comprehensive Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree.

Doctoral students who have passed the Departmental Comprehensive Examination may take any course for an S/U grade, with the exception of any course that the student’s Ph.D. Comprehensive Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all Structural Engineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Comprehensive Examination.

It is also recommended that all Ph.D. students enroll in SE 290 every quarter in the first year, and are strongly recommended to take it for at least one quarter in every subsequent year. All doctoral students are strongly recommended to take SE 200, Applied Mathematics in Structural Engineering prior to taking the departmental comprehensive exam. Applied mathematics (SE200 or equivalent) may also be covered in the oral exam.

Doctoral Examinations:

A Structural Engineering Ph.D. student is required to pass three examinations. The first one is the **Departmental Comprehensive Examination**, which should be taken after three to six quarters of full-time graduate study with a minimum GPA of 3.5. This examination is intended to determine the candidate’s ability to successfully pursue a research project at a level appropriate for the doctorate. It is administered by at least four faculty members, three of whom must be in Structural Engineering.
Although the student may elect to satisfy one examination area by course work, he or she is responsible for material pertaining to four focus areas. In order to satisfy an area by course work, all the courses in that area must have been taken at UCSD, the grade in each course must be no lower than a B, and the overall GPA in that area must be a minimum of 3.5. To ensure appropriate breadth, the focus areas should consist of the following: (a) two focus areas within Structural Engineering which are closely related to the student’s research interest, (b) one focus area, usually within Structural Engineering that is not directly related to the student’s area of research, and (c) one minor focus area outside the Department of Structural Engineering. Minor areas too closely related to the major areas will not be approved by the Graduate Affairs Committee. Example focus areas for the Departmental Comprehensive Examination are listed at the end of this section. Students intending to specialize in the emerging areas of structural health monitoring, damage diagnostics and prognosis, and validated simulations are advised to take courses in the focus areas of Advanced Structural Behavior. Outside courses within the three Technology Areas of Sensing, Data Interrogation, and Predictive Modeling listed earlier can also be used to satisfy the outside Structural Engineering requirement. In addition, the Department has opportunities for select students in these areas to participate in special seminars, reviews, and research at leading collaborating institutes and laboratories such as the Los Alamos National Laboratories.

Since the examination areas must be approved by the Graduate Affairs Committee, students are advised to seek such approval well before their expected examination date, preferably while planning their graduate studies. Although students are not required to take particular courses in preparation for the departmental examination, the scope of the examination in each area is associated with a set of three graduate courses, generally focus areas offered or approved by the Department. A candidate can develop a sense of the level of knowledge expected to be demonstrated during the examination by studying the appropriate syllabi and/or discussing the course content with faculty experienced in teaching the courses involved. The Departmental Comprehensive Examination may be a written or oral examination, at the discretion of the committee.

The Ph.D. Candidacy Examination is the second examination required of Structural Engineering doctoral students. Teaching Experience is required of all Structural Engineering Ph.D. students prior to taking the Ph.D. Candidacy Examination. The teaching
experience is defined as lecturing one hour per week in either a problem-solving section or laboratory session, for one quarter in an undergraduate course designated by the Department. The requirement can be fulfilled by teaching assistant service or by taking SE 501 for academic credit (SE 501). Students must contact the Graduate Student Affairs Office in the Department to plan for completion of this requirement.

In preparation for the Ph.D. Candidacy Examination, students must have completed the Departmental Comprehensive Examination and the Departmental Teaching Experience requirement, have a faculty research adviser, have identified a topic for their dissertation research, and have made initial progress in that research. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council. In accordance with Academic Senate Regulation 715(D), “A doctoral committee of five or more members shall be appointed by the Dean of Graduate Studies under the authority of the Graduate Council. The committee members shall be chosen from at least two departments, and at least two members shall represent academic specialties that differ from the student’s chosen specialty. In all cases, each committee must include one tenured UCSD faculty member from outside the student’s major department.” The committee conducts the Ph.D. Candidacy Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. A short written document describing the research plan must be submitted to each member of the committee at least two weeks before the Ph.D. Candidacy Examination. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate in the Doctor of Philosophy degree. The Ph.D. Candidacy Examination is an oral examination.

The **Dissertation Defense** is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. While the copy of the dissertation handed to the committee is expected to be complete, and in final form, it should be noted that students are expected to make changes in the text per direction of the committee as a result of the defense. This examination may not be conducted earlier than
three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D.

Ph.D. Time Limit Policy: Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations: In the spring of each year, the department faculty members are required to evaluate their doctoral student's overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty member may determine that the student cannot continue in the graduate program.
SAMPLE FOCUS AREAS FOR Ph.D. STUDENTS
(Please check class schedule for quarterly offerings)

Structural Analysis (take any 3)

SE 201A Advanced Structural Analysis
SE 201B Nonlinear Structural Analysis
SE 202 Structural Stability
SE 203 Structural Dynamics
SE 204 Advanced Structural Dynamics
SE 206 Random Vibrations
SE 205 Nonlinear Mechanical Vibrations
SE 215 Cable Structures
SE 224 Structural Reliability and Risk Analysis

Computational Mechanics and Finite Elements (take any 3)

SE 233 Computational Techniques in Finite Elements
SE 274 Nonlinear Finite Element Methods
SE 276A Finite Element Methods in Solid Mechanics I
SE 276B Finite Element Methods in Solid Mechanics II
SE 276C Finite Element Methods in Solid Mechanics III
SE 277 Error Control in Finite Element Analysis
SE 278A Computational Fluid Dynamics
SE 278B Computational Fluid-Structure Interaction
SE 279 Meshfree Methods for Linear and Nonlinear Mechanics

Structural Design (take any 3)

SE 151B Design of Prestressed Concrete
SE 211 Advanced Reinforced & Prestressed Concrete Design
SE 212 Advanced Structural Steel Design
SE 213 Bridge Design
SE 214 Masonry Structures
SE 220 Seismic Isolation and Energy Dissipation
SE 223 Advanced Seismic Design of Structures

Earthquake Engineering (take any 3)

SE 203 Structural Dynamics
SE 206 Random Vibrations
SE 220 Seismic Isolation and Energy Dissipation
SE 221 Earthquake Engineering
SE 222 Geotechnical Earthquake Engineering
SE 223 Advanced Seismic Design of Structures
SE 243 Soil-structure Interaction
Advanced Composites (take any 3)

SE 251A Processing Science of Composites
SE 251B Mechanical Behaviors of Polymers & Composites
SE 252 Experimental Mechanics and NDE
SE 253A Mechanics of Laminated Comp. Structures I
SE 253B Mechanics of Laminated Comp. Structures II
SE 253C Mechanics of Laminated Anisotropy Plates & Shells

Geotechnical Engineering (take any 3)

SE 222 Geotechnical Earthquake Engineering
SE 241 Advanced Soil Mechanics
SE 242 Advanced Foundation Engineering
SE 243 Soil-structure Interaction
SE 244 Numerical Methods in Geomechanics
SE 247 Ground Improvement
SE 250 Stability of Earth Slopes & Retaining Walls

Solid Mechanics (take any 3)

SE 234 Plates and Shells (or MAE equivalent)
SE 235 Wave Propagation in Elastic Media
SE 252 Experimental Mechanics and NDE
SE 271 Solid Mechanics for Structural & Aerospace Engineering
SE 272 Theory of Elasticity
SE 273 Anelasticity
SE 252 Experimental Mechanics and NDE

Advanced Structural Behavior (take any 3)

SE 202 Structural Stability
SE 204 Advanced Structural Dynamics
SE 205 Nonlinear Mechanical Vibrations
SE 206 Random Vibrations
SE 224 Structural Reliability and Risk Analysis
SE 252 Experimental Mechanics and NDE
SE 265 Structural Health Monitoring Principles
SAMPLE NON-SE FOCUS AREAS FOR Ph.D. STUDENTS

(Please check class schedule for quarterly offerings)

Seismology (take any 3)

SIO 225 Physics of Earth Materials
SIO 227A Introduction to Seismology
SIO 227C Advanced Seismology II

Controls

MAE 280A Linear Systems Theory or ECE 275A Parameter Estimation
MAE 280B Linear Control Design or ECE 275B Parameter Estimation II
MAE 284 Robust and Multi-Variable Control

Computer-Aided Design

MAE 291 Design and Mechanics in Computer Technology
MAE 292 Computer-Aided Design and Analysis
MAE 293 Advanced Computer Graphics for Engineers and Scientists

Signal Processing (take any 3)

ECE 161A Introduction to Digital Signal Processing
ECE 251A Digital Signal Processing I
ECE 251B Digital Signal Processing II
ECE 251C Filter Banks and Wavelets
ECE 251D Array Processing
ECE 254 Detection Theories

Mathematics (take any 3)

MAE 290A, B Efficient Numerical Methods for Simulation, Optimization and Control
(Choose a third from MAE 232A, MAE 294A, or consent of advisor)
MAE 294A Introduction to Applied Mathematics
MAE 294B Introduction to Applied Mathematics II
MAE 294C Introduction to Applied Mathematics III

Material Science (take any 3)

MATS 211A Mechanical Properties
MAE 233A Fracture Mechanics
MAE 233B Micromechanics
SE 151B. Design of Prestressed Concrete (4) Time-dependent and independent properties of concrete and reinforcing material. Concept and application of prestressed concrete. Service and ultimate limit state analysis and design of prestressed concrete structures and components. Detailing of components. Calculation of deflection and prestress losses. Prerequisites: grade of C– or better in SE 151A.

SE 200. Applied Mathematics in Structural Engineering (4) This course is designed to give beginning students the basic preparation in mathematical methods required for graduate Structural Engineering courses. Topics include: linear algebra; systems of ordinary differential equations; diffusion and wave propagation problems; integral transforms; and calculus of variations. Prerequisites: graduate standing or consent of instructor.

SE 201A. Advanced Structural Analysis (4) Application of advanced analytical concepts to structural engineering problems. Analysis of frame structures using matrix methods and the finite element method. Displacement-based and force-based beam element formulations. Development of computer software for structural analysis. Prerequisites: graduate standing or consent of instructor.

SE 201B. Nonlinear Structural Analysis (4) The course emphasizes the principles behind modern nonlinear structural analysis software. It deals with the theory, computer implementation, and applications of methods of material and geometric nonlinear analysis. Emphasis is on 2D and 3D frame structures modeled using ID (beam-column) elements. Use of computer resources. Prerequisites: SE 201A or equivalent, or consent of instructor.

SE 202. Structural Stability (4) Static, dynamic, and energy-based techniques and predicting elastic stability. Linear and nonlinear analysis of classical and shear deformable beams and plates. Ritz, Galerkin, and finite element approaches for frames and reinforced shells. Nonconservative aerodynamic (divergence flutter) and follower forces. Recommended preparation: SE 101A-C and SE 110A or equivalent background in solid mechanics and structural dynamics. Prerequisite: graduate standing or consent of instructor.

SE 204. Advanced Structural Dynamics (4) Free-and forced-vibration of continuous systems such as axial and torsional vibrations of bars and transverse vibrations of various beams, membranes, and plates. Euler-Lagrange formulation using variational calculus. Rayleigh-Ritz method for approximation. Applications in vibration suppression/isolation. Prerequisites: graduate standing.

SE 205. Nonlinear Mechanical Vibrations (4) Advanced analytical techniques to understand nonlinearity in mechanical vibration. Phase plane analysis instability, and bifurcations. Applications in nonlinear structural resonance. Introduction to chaotic dynamics, advanced time series analysis, and using chaotic dynamics in applications such as structural damage assessment. Prerequisite: SE 203 or consent of instructor; graduate standing (Revised CAF being submitted.)

SE 207. Topics in Structural Engineering (4) A course to be given at the discretion of the faculty in which topics of current interest in structural engineering will be presented.

SE 211. Advanced Reinforced and Prestressed Concrete Design (4) Advanced topics in concrete design, including frame and shear wall structures, design of connections, reinforced and prestressed concrete system evaluation for seismic resistance including confinement and
ductility requirements. Upper and lower bound theories for slab design. Recommended Preparation: SE 151A, or equivalent background in basic RC/PC design, or consent of instructor.

SE 212. Advanced Structural Steel Design (4) Load and Resistance Factor Design (LRFD) philosophy. Behavior and design of steel elements for global and local buckling. Background of seismic codes. Ductility requirements and capability design concept. Seismic design of steel moment frames and braced frames. Prerequisites: SE 201 and SE 150, or equivalent course, or consent of instructor.

SE 214. Masonry Structures (4) Analysis and design of unreinforced and reinforced masonry structure using advanced analytical techniques and design philosophies. Material properties, stability, and buckling of unreinforced masonry. Flexural strength, shear strength, stiffness, and ductility of reinforced masonry elements. Design for seismic loads. Prerequisites: SE 151A, B, or equivalent basic reinforced concrete course, or consent of instructor; graduate standing.

SE 215. Cable Structures (4) The course deals with cable structures from a structural mechanics point of view. The theoretical and practical aspects of the application of cables to moorings, guyed structures, suspension bridges, cable-stayed bridges, and suspended membranes are discussed. Prerequisite: graduate standing or consent of instructor.

SE 220. Seismic Isolation and Energy Dissipation (4) Concepts, advantages and limitations of seismic isolation techniques; fundamentals of dynamic response under seismic excitation; spectral analysis; damping; energy approach; application to buildings and structures. Prerequisites: background in structural dynamics, or consent of instructor
SE 221. Earthquake Engineering (4) Introduction to plate tectonics and seismology. Rupture mechanism, measures of magnitude and intensity, earthquake occurrence and relation to geologic, tectonic processes. Probabilistic seismic hazard analysis. Strong earthquake ground motion; structural response; soil-structure interaction; design criteria; code requirements. Use of computer resources. Prerequisites: SE 203 or consent of instructor; graduate standing.

SE 222. Geotechnical Earthquake Engineering (4) Influence of soil conditions on ground motion characteristics; dynamic behavior of soils, computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 224. Structural Reliability and Risk Analysis (4) Probability theory and random processes; fundamentals of structural reliability theory. Modern methods of structural reliability analysis including computational aspects; structural component and system reliability. Reliability-based design codes; structural modeling for performance and safety. Risk analysis of structural systems. Prerequisites: Basic knowledge of probability theory (e.g., SE 125)

SE 233. Computational Techniques in Finite Elements (4) (Cross-listed with MAE 235) Practical application of the finite element method to problems in solid mechanics including basic preprocessing and postprocessing. Topics include element types, mesh refinement, boundary conditions, dynamics, eigenvalue problems, and linear and nonlinear solution methods.
SE 235. Wave Propagation in Elastic Media (4) Wave propagation in elastic media with emphasis on waves in unbounded media and on uniform and layered half-spaces. Fundamental aspects of elastodynamics. Application to strong-motion seismology, earthquake engineering, dynamics of foundations, computational wave propagation, and non-destructive evaluations. Prerequisites: graduate standing or consent of instructor.

SE 236. Wave Propagation in Continuous Structural Elements (4) Propagation of elastic waves in thin structural elements such as strings, rods, beams, membranes, plates and shells. An approximate strength-of-materials approach is used to consider propagation of elastic waves in these elements and obtain the dynamic response to transient loads. Prerequisites: graduate standing or consent of instructor.

SE 242. Advanced Foundation Engineering (4) Advanced treatment of topics in foundation engineering, including earth pressure theories, design of earth retaining structures, bearing capacity, ground improvement for foundation support, analysis and design of shallow and deep foundations, including drilled piers and driven piles.

SE 247. Ground Improvement (4) Concepts underpinning mechanical, hydraulic, chemical and inclusion-based methods of ground improvement will be discussed. Students will be able to understand the advantages, disadvantages and limitations of the various methods; and develop a conceptual design for the most appropriate improvement strategy. Recommended Preparation: SE 181 or equivalent background in the physics and engineering properties of soil. Prerequisites: graduate standing or consent of instructor.

SE 251B. Mechanical Behaviors of Polymers and Composites (4) Material science oriented course on polymers and composites. Mechanical properties of polymers; micromechanisms of elastic and plastic deformations, fracture, and fatigue of polymers and composites. Prerequisites: graduate student standing required.

SE 252. Experimental Mechanics and NDE (4) Theory of electrical resistance strain gages, full-field coherent optical methods including photo elasticity, moiré’ and speckle interferometry, ultrasonic’s, thermography and fiberoptic sensing. Applications to materials characterization, defect detection and health monitoring of structures with emphasis on fiber-reinforced composites. Prerequisites: SE 101A, SE 110A, and MAE 131B, or consent of the instructor.

SE 253A. Mechanics of Laminated Composite Structures I (4) Graduate-level introductory on mechanics of composites and anisotropic materials. Overview of composite materials and processes, 3-D properties and stress-strain relationships, micromechanics, classical laminated plate theory, basic failure criteria, thermal/moisture/CTE. Students may not receive credit for both SE 253A and SE 250. Prerequisites graduate student standing required.

SE 253B. Mechanics of Laminated Composite Structures II (4) Advanced topics, with prerequisite being SE 253A, or equivalent. Macro- and micro-material modeling, classical and
shear deformable laminate beam and plate theories developed via energy principles, Ritz, Galerkin, and Finite element based solutions, advanced failure theories, fracture, holes/notches and hole-size effect, interlaminar stresses, free-edge problems, impact, damage tolerance, fatigue, elastic tailoring, thermally stabile/zero CTE structures, etc. *Prerequisites: SE 253A or equivalent, graduate standing.*

SE 261. Aerospace Engineering Design (4) Advanced topics in the design of weight-critical aerospace structures. Topics include: static, dynamic and environmental load definitions; metallics and polymeric composite material selection; semi-monocoque analysis techniques, and bolted/bonded connections. Design procedures for sizing the structural components of aircraft and spacecraft will be reviewed.

SE 265. Structural Health Monitoring (4) A modern paradigm of structural health monitoring as it applies to structural and mechanical systems is presented. Concepts in data
acquisition, feature extraction, data normalization, and statistical modeling will be introduced in an integrated context. Matlab-based exercises. Term project. Prerequisites: graduate student, undergraduate vibrations or structural dynamics course.

SE 268. Structural System Testing and Model Correlation (4) Dynamic/model testing of structures: test planning/execution, actuation, sensing, and data acquisition, signal processing, data conditioning, test troubleshooting. Methods of updating finite element structural models to correlate with dynamic test results. Model/test correlation assessment in industrial practice. Recommended preparation: vibrations, finite element analysis, and knowledge of MATLAB. Prerequisites: graduate standing or consent of instructor.

SE 271. Solid Mechanics for Structural and Aerospace Engineering (4) Application of principles of solid mechanics to structural components and systems, description of stresses, strains, and deformation. Use of conservation equations and principle of minimum potential energy. Development of constitutive equations for metallic cementitious and polymeric materials. Prerequisites: SE 110A or consent of instructor.

SE 272. Theory of Elasticity (4) Development, formulation, and application of field equations of elasticity and variational principles for structural applications in civil and aerospace area. Use of plane stress and plane strain formulation, solution of typical boundary value problems. Prerequisites: SE 271 or consent of instructor.

SE 273. Anelasticity (4) Mechanical models of viscoelastic, plastic, and viscoplastic behavior in simple shear or uniaxial stress. Constitutive relations for three-dimensional states of stress and strain. Application to selected technological problems. Prerequisites: graduate standing and SE 271 and SE 272, or MAE 231A and MAE 231B, or consent of instructor.

SE 276B. Finite Element Methods in Solid Mechanics (4) Finite element methods for linear problems in structural dynamics. Beam, plate, and doubly curved shell elements are derived. Strategies for eliminating shear locking problems are introduced. Formulation and numerical solution of the equations of motion for structural dynamics are introduced and the effect of different mass matrix formulations on the solution accuracy is explored.

SE 276C. Finite Element Methods in Solid Mechanics III (4) Finite element methods for problems with both material and geometrical (large deformations) nonlinearities. The total Lagrangian and the updated Lagrangian formulations are introduced. Basic solution methods for the nonlinear equations are developed and applied to problems in plasticity and hyperelasticity. Prerequisites: graduate standing and SE 276A or MAE 232A and MAE 231A or SE 271.

SE 277. Error Control in Finite Element Analysis (4) This course will provide an overview of the latest technology for evaluating and improving the accuracy and validity of linear, non-linear finite element models, solution verification, finite element model validation, sensitivity analysis, uncertainty analysis, and test-analysis correlation. Prerequisites: SE 232B or MAE 232B

SE 278A. Finite Element Methods for Computational Fluid Dynamics (4) (Cross-listed with MAE236A) Development and application of advanced computational techniques for fluid flow. Stabilized and variational multiscale methods for finite element and related discretizations are stressed. Applications involved advection-diffusion equations and systems, and incompressible and compressible Navier-Stokes equations. Turbulence modeling will also be covered. Prerequisites: MAE 232A or SE 276A or consent of instructor.
SE 278B. Computational Fluid-Structure Interaction (4) (Cross-listed with MAE236B)
Conversation laws on general moving domains. Arbitrary Lagrangian-Eulerian (ALE) and space-time approaches to fluid-structure interaction are covered. Suitable discretizations, mesh motion, and discrete solution strategies are discussed. Prerequisites: SE 278A.

SE 290. Seminar in Structural Engineering (2) Weekly seminar and discussion by faculty, visitors, postdoctoral research fellows and graduate students concerning research topics in earthquake engineering and related subjects. May be repeated for credit. (S/U grades only.)

SE 296. Independent Study (4) Prerequisites: consent of instructor.

SE 298. Directed Group Study (1-4) Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisites: consent of instructor.

SE 299. Independent Study. Graduate Student Research (1-12) (S/U grades permitted.)

SE 501. Teaching Experience (2) Teaching experience in an appropriate SE undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. Prerequisites: consent of instructor and the department. (S/U grades permitted.)
UCSD is situated on a park-like 1,200-acre site high on the bluffs over-looking the Pacific Ocean in La Jolla. La Jolla boasts some of the finest beaches and coves, restaurants, art galleries, and other attractions in the nation. The San Diego metropolitan area - which includes the UCSD campus - enjoys one of the most comfortable climates in the United States, twelve months out of the year.

Much of UCSD’s recreational and social life centers on the waterfront, with surfing, scuba diving and other such activities. Mission Bay Park and San Diego Bay beaches are a favorite playground of San Diegans. Mission Bay is a great place for sailing, jet skiing and windsurfing. Throughout the area, students find a variety of amusements, ranging from the small-town atmosphere of waterfront Del Mar southward to the open-air markets of Tijuana and the rustic wilderness of Mexico’s Baja California Peninsula.

The city of San Diego is 12 miles south of the campus, and offers a wide range of recreational opportunities, including Old Town (California’s birthplace), Sea World in Mission Bay, and the world-famous San Diego Zoo and Safari Park. A year-round calendar of major league sporting events is offered in the city’s Sports Arena, Petco Park, home of the Padres, and Qualcomm Stadium, the home of the Chargers.

For theater lovers, there are numerous stages in San Diego, including the Old Globe Theater in Balboa Park-- the site of the National Shakespeare Festival every summer. A year-round program of contemporary and classical professional theater may be enjoyed in the Old Globe and the adjacent and special summer theater fare is featured on the park’s outdoor Festival Stage. We also have the La Jolla Playhouse, a professional theatre located on the UCSD campus. The Playhouse is where you can see classic productions, new plays and spectacular musicals. The Department of Theater presents plays in both the 500-seat Mandell Weiss Center of the Performing Arts. The Department of Visual Arts also offers a continuing series of art shows in the University Art Gallery, and displays of student art in other campus galleries.

Fishing opportunities are plentiful offshore in kelp beds west of La Jolla, and surrounding the Coronado Islands in Mexican waters. Bass and trout fishing are available in nearby
lakes. An hour’s drive to the east, the Laguna Mountains provide pleasure in all seasons for campers and hikers. Beyond the Laguna’s lies the vast Anza-Borrego Desert with its breathtaking display of wild flowers in the spring.

The peninsula of Baja California, one of the world’s last great wilderness areas, stretches 900 miles southward from the international gateway at Tijuana. The peninsula - a mecca for lovers of unsoiled beaches and untouched mountains and deserts - is the site every year of the grueling Baja cross-country auto race.
The high national and international visibility and recognition of the UCSD Structural Engineering program can be attributed to the outstanding and unique experimental facilities and the high quality of the structural engineering faculty.

The Charles Lee Powell Structural Research Laboratories have developed over the past two decades into one of the world’s leading experimental structural research facilities for large and full-scale testing of structural systems and components. Currently, three separate test facilities comprise the Powell Structural Research Laboratories on UCSD campus. The Structural Systems Laboratory with a 15-m high reaction wall and a 30-m long and 15-m wide strong floor is capable of full-scale testing of up to 5-story buildings under simulated seismic loads and complete bridge systems under simulated traffic and/or seismic load conditions. The Structural Components Laboratory features a 20-m long reaction wall for structural component tests such as columns, beams, joints, etc., and a 5 x 3-m shake table for real time earthquake load simulation on structural models and components with payloads close to 40 tons. The third testing facility, Composite and Aerospace Structures Laboratory, is dedicated to the evaluation of advanced composite structural components and systems.

State-of-the-art equipment including servo-controlled hydraulic actuators and signal conditioning for up to 1,500 high-speed data channels provides structural testing capabilities which are unequaled worldwide.

The Powell Structural Research Laboratories also include manufacturing and materials characterization laboratories, such as the Advanced Composites Laboratory for advanced composite materials and structural members, and geotechnical research laboratories with a state-of-the-art geotechnical centrifuge (5 meter diameter). A fourth large-scale structural testing laboratory houses the Caltrans Seismic Response Modification Device (SRMD) Testing Facility for the full-scale testing and evaluation of seismic response mitigation devices such as base-isolation bearings and dampers.
With its one-of-a-kind facilities, the **Englekirk Structural Engineering Center** at the Elliot Field Station of the University of California, San Diego is enabling structural tests that have never been possible before. The Center is equipped with the world's first outdoor shake table (http://nees.ucsd.edu), as part of the Network for Earthquake Engineering Simulation supported by NSF, allowing researchers to perform dynamic earthquake safety tests on full-scale structural systems. Adjacent to it is the country's largest soil-structure interaction test facility. The Center's **blast simulator** is being used to study the effects of bomb blasts and test new technologies to harden buildings against terrorist bomb attacks.

Other research laboratories include the **NDE & Structural Health Monitoring Laboratory** and **Structural Dynamics Laboratory**. Laboratory listings and additional information can be found on our web site (http://structures.ucsd.edu/node/53).
ACADEMIC CALENDAR 2014-15

Fall 2014

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Quarter begins</td>
<td>Monday, September 29</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>Thursday, October 2</td>
</tr>
<tr>
<td>Veterans Day Holiday</td>
<td>Tuesday**, November 11</td>
</tr>
<tr>
<td>Thanksgiving Holiday</td>
<td>Thursday – Friday, November 27–28</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>Friday, December 12</td>
</tr>
<tr>
<td>Final Exams</td>
<td>Saturday** – Saturday, December 13**–20</td>
</tr>
<tr>
<td>Fall Quarter ends</td>
<td>Saturday, December 20</td>
</tr>
<tr>
<td>Christmas Holiday</td>
<td>Thursday – Friday, December 25-26</td>
</tr>
<tr>
<td>New Year Holiday</td>
<td>Wednesday – Thursday, December 31– January 1</td>
</tr>
</tbody>
</table>

- 49 Days of Instruction -
- 60 Days in Quarter -

Winter 2015

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Quarter begins</td>
<td>Friday, January 2</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>Monday, January 5</td>
</tr>
<tr>
<td>Martin Luther King, Jr. Holiday</td>
<td>Monday, January 19</td>
</tr>
<tr>
<td>Presidents' Day Holiday</td>
<td>Monday, February 16</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>Friday, March 13</td>
</tr>
<tr>
<td>Final Exams</td>
<td>Saturday** – Saturday, March 14**–21</td>
</tr>
<tr>
<td>Winter Quarter ends</td>
<td>Saturday, March 21</td>
</tr>
</tbody>
</table>

- 48* Days of Instruction -
- 56 Days in Quarter -

Spring 2015

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Quarter begins</td>
<td>Thursday, March 26</td>
</tr>
<tr>
<td>César Chávez Holiday</td>
<td>Friday, March 27</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>Monday, March 30</td>
</tr>
<tr>
<td>Memorial Day Observance</td>
<td>Monday, May 25</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>Friday, June 5</td>
</tr>
<tr>
<td>Final Exams</td>
<td>Saturday** – Friday, June 6**–12</td>
</tr>
<tr>
<td>Spring Quarter ends</td>
<td>Friday, June 12</td>
</tr>
<tr>
<td>Commencement</td>
<td>Saturday-Sunday, June 13–14</td>
</tr>
</tbody>
</table>

- 49* Days of Instruction -
- 57 Days in Quarter -
IMPORTANT NUMBERS – IN CASE OF AN EMERGENCY

EMERGENCY – Life threatening situation
(All phone numbers in 858 area code)

- From a campus phone 911
 From a cell phone, call UCSD Campus Police 534-HELP (4357)

- If the emergency involves any of the department labs 534-4302
 Notify Noah Aldrich, the Department Safety Officer (cell) (619) 415-9226

- UCSD Medical Center, La Jolla, Thornton Hospital,
 Emergency and Urgent Care 657-7600

- UCSD Medical Center, Hillcrest
 Emergency and Urgent Care (619) 543-6400

- Student Health Services (Urgent Care) 534-3300

- San Diego County Center for Community Solutions
 (Rape Crisis Hotline) (888) 385-4657

- Student Sexual Assault Resource Center (SARC) 534-5793

- Counseling and Psychological Services (CAPS) 534-3755

- Poison Information Hotline (24 hour) 876-4766

- Environment Health & Safety Hotline 534-3660

- Physical Plant Repair (Trouble Desk)
 Facilities Management 534-2930

Additional Resources:

- Lost & Found 534-4361

- Student Policies & Judicial Affairs (SPJA) 534-6225

- Office for Students with Disabilities (OSD) 534-4382

- International Center 534-3730
DIRECTORY OF CAMPUS SERVICES

Resources:
- Academic Computing Services acs-help@ucsd.edu
- Bookstore http://ucsandiegobookstore.com/
- Graduate Student Association (GSA) gsa@ucsd.edu
- Office of Graduate Studies (OGS) http://ogs.ucsd.edu/
- UCSD Libraries http://libraries.ucsd.edu/
- Parking parking@ucsd.edu
- Photo I.D./Campus I.D. Card 534-4322 campuscards@ucsd.edu
- Registrar Office 534-3150 http://registrar.ucsd.edu
- Residency Requirements 534-4586 http://registrar.ucsd.edu/residency
- Student Financial Aid http://fao.ucsd.edu
- Student Health Services http://studenthealth.ucsd.edu
- Student Information - (EDNA) Price Center 534-EDNA (3362)

Campus Services:
- Career Service 534-3750 http://career.ucsd.edu
- Center for Teaching Development (CTD) 534-6767 www.ctd.ucsd.edu
- Cross Cultural Center 534-9689 http://ccc.ucsd.edu/
- International Center 534-3730 http://icenter.ucsd.edu/
- Lesbian, Gay, Bisexual, Transgender Resource 822-3493 http://lgbt.ucsd.edu/
- Office for Student with Disabilities (OSD) 534-4382 http://disabilities.ucsd.edu/
- Psychological and Counseling Services 534-3755 http://psychservices.ucsd.edu/#graduate
- Sexual Harassment Prevention & Policy 534-8298
 http://students.ucsd.edu/well-being/_organizations/sarc/index.html
- Student Legal Services 534-4374
 http://students.ucsd.edu/campus-services/_organizations/student-legal/
- Student Safety and Awareness Program 534-5793
 http://students.ucsd.edu/well-being/_organizations/sarc/index.html
- Women's Center 822-0074 http://women.ucsd.edu/
- University Center Sunshine Store 534-2875

Child Care Services:
- Early Childhood Education Center 552-2500

Recreation:
- Canyon View Pool http://recreation.ucsd.edu/
- Sports Facilities http://sportsfac.ucsd.edu/
- RIMAC 534-7884